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ABSTRACT 

To every symmetric matrix A with entries ___ 1, we associate a graph G(A), 
and ask (for two different definitions of distance) for the distance of G(A) to 
the nearest complete bipartite graph (cbg). Let 21(A), 21 (A) be respectively 
the algebraically largest and least eigenvalues of A. The Frobenius distance (see 
Section 4) to the nearest cbg is bounded above and below by functions of 
n -- ;h (A), where n = o r d  A. The ordinary distance (see Section 1) to the 
nearest cbg is shown to be bounded above and below by functions of 21 (.4). A 
curious corollary is: there exists a function f(independent of n, and given by 

such that [2i (A)[ < f(;tl(A), where 2 i (A) is any eigenvalue of A other (1 
than 21(A). 

1. Introduction 

Let A be a real symmetric matrix; denote its eigenvalues in descending order by 

21(A) > 22(A)> ..., in ascending order by 21(A)< 22(A)< .... We shall be 

concerned with the case where every entry in A is + 1. To simplify exposition and 

some calculations, we shall assume all diagonal entries are + 1, though this 

assumption is not essential. We shall show the following curiosity: 21(A) gives 

bounds on all other eigenvalues which are (except for 21(A), of course) independent 

of the order of A. Specifically, define 

(1.1) f ( x )  = 4 ( 2 x 2 - x + l ( x  2 - x )  - x + 3). 

THEOREM 1.1. Let  A = (aij) be a s ymmet r i c  ma t r i x  with aii = l f o r  all  i and 

a~j = + 1 f o r  all  i , j ;  then 

(1.2) 12i(A) l <f(21(A)) f o r  i > 1. 
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I f  the order of A is n, then 

0 < n - ,~:(A) < f(21(A)). 

Theorem 1.1 follows readily from Theorem 1.2, which relates 21(A) to a property 

of a graph associated with A. A graph G, with vertex set V = V(G) is said to be a 

complete bipartite graph if V can be partitioned into disjoint subsets V 1 and V 2 

(one of which may be empty) so that every pair of vertices in the same V~ are not 

adjacent, every pair of vertices in different V~ are adjacent. We also need the concept 

of distance between graphs. If G and H are two graphs on the same set of vertices 

then d(G, H) = d if d is the smallest number such that for each vertex i, the 

number of edges in G adjacent to i which are not edges of H, plus the number of 

edges in H adjacent to i which are not edges of G, does not exceed d. Alternatively, 

d(G,H) is the maximum valence of the graph of edges added and deleted to 

convert G to H. 

THEOREM 1.2. l f  A satisfies the hypothesis of Theorem 1.1, if  A is of order n, 

and if  G(A) is the graph with V(G(A)) = {l, ..., n}, and i and j adjacent if  and 

only if  aij = - 1, then there is a complete bipartite graph on n vertices whose 

distance to G is at most �89 

In Section 4, we shall present analogous results emphasizing n -  21 rather 

than 2 i. 

2. Proof of Theorem 1.2 

LEMMA 2.1. Let ~-~ ,,It(A), and assume 

~(~- 1) 
(2.1) n > 

Then neither B i nor B 2 can be a principal submatrix of A, where 
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where J is a square matr ix  of order n, every entry of which is 1. 

PROOF. Consider first B1. Let y be the vector of  order 2n + 1 whose first 

coordinate is 1, all other coordinates are the real number x. Examine the Rayleigh 

quotient y 'B~y / y ' y .  Since the entries in A~ and a 2 are _ 1, it follows that 

Y 'B ly  <- 1 + 4nx. Hence, 

(2.2) y'B1y < 1 + 4nx 
y ' y  = l + 2nx 2" 

Suppose we can show that for some e > 0, there exists a real number x such that 

1 + 4nx 
(2.3) 1 + 2nx ~ = 2 - ~. 

Then (2.2) and (2.3), combined with 21(B1)< y ' B ~ y / y ' y  will imply ))(B~) < 

2 - e  < 2t(A). But if BI is a principal submatrix of A, 21(B1) >___ 21(A). So all we 

need to do is prove (2.3). But solving (2.3) for x shows that a real x exists provided 

(A- e) (2- e- I) 
(2.4) n > 

2 

which follows from (2.1). 

The matrix B 2 is similar to B 1. Hence (2.1) implies ).I(B2)< 21(A), a con- 

tradiction. 

LEMMA 2.2. Let A be any +_ 1 matrix  with 2m - 1 rows and 22m- l ( m -  1) + 1 

columns. Then A contains a square submatrix of order m all entries of which 

are the same. 

PROOF. We shall do the case m -- 3, which is sufficient to indicate the proof in 

general. The number of columns of A is 65, so at least 33 entries in the first row 

are the same. Examing the corresponding 33 entries in the second row, at least 17 

are the same. Of  the corresponding entries in the third row at least 9 are the same; 

of the corresponding entries in the fourth row at least 5 are the same; of the 

corresponding entries in the fifth row at least 3 are the same sign. So we have a 

5 x 3 submatrix of A in which each row consists of  the same entries. At least 3 

of the rows must be the same. 

Next, let 1 and 2 be vertices of  G(A). Let V0 be the set of all other vertices of 

G(A) each of which is adjacent to either none or both of {1, 2}. Let 1:1 be the set 

of  all other vertices of  G(A) each of which is adjacent to exactly one of {1, 2}. 

Thus V(G(A)) = {1, 2} t3 V o U V 1. 
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LEMMA 

(2.4) 

PROOF. 
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2.3. With the above notation, it is impossible that both 

I ~1 > 2a" -a (it2 _ it) + 1, i = 0, 1, where it = it1(A). 

Assume otherwise. By a diagonal similarity transformation (which 

does not change the eigenvalues of A), we may assume that all vertices in Vo are 

adjacent to neither 1 nor 2, and all vertices in V1 are adjacent to 1. Then a principal 

submatrix of A has the following appearance: 

(2.5) 
1 +1 1 ...1 - 1  . . . .  1 

+ 1  1 1 . . -1  1 . . .  1 

1 1 

: : AI A2 

1 1 

- 1  1 

: : A2 r A3 

- 1  1 

A = 

where each A+ is square, of order 2 ~2-a(22 - 2) + 1. By Lemma 2.3, applied to A2, 

A has a principal submatrix B of the form 

1 _ 1  

+ 1  1 

1 1 

1 1 

- 1  1 

- 1  1 

B = 

1 -.- 1 - 1  . . . .  1 

1 ..- 1 1 . . .  1 

A, _ J 

_+ J A5 

where J is a square matrix of order ( 2  2 - -  2)/2 + 1, every entry of which is 1. I f  

the off diagonal is + J, then deleting the second row and column from B produces 
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a matrix of the form B 2 in Lemma 2.1. I f  it is - J, deleting the first row and 

column produces a matrix of the form B 1 considered in Lemma 2.1. In both 

cases, Lemma 2.1 provides the desired contradiction. 

Let s = 2 x~-a0.2 - 2) + 1. For  the remainder of the proof, assume the order 

of A is at least 3s + 2 (otherwise, Theorem 1.2 is obviously true). Say that two 

vertices of G(A) are 0-related if the corresponding V o has cardinality at least 

2s + 1, and they are 1-related if the corresponding 1:1 has cardinality at least 

2s + 1. By Lemma 2.3, any two vertices are 0-related or 1-related, but not both. 

LEMMA 2.4. Let A be of order n, and let G(A) be the graph whose vertices 

are the vertices of G(A), with two vertices adjacent if and only if they are 1- 

related. Then G(A) is a complete bipartite graph. 

PROOF. We must show that: 

(2.6) if I and 2 are 0-related, 2 and 3 are 0-related, then 1 and 3 are 0-related; and 

(2.7) if I and 2 are 1-related, 2 and 3 are 1-related, then 1 and 3 are 0-related. 

We shall prove (2.6). The proof of (2.7) is analogous. Let W be the set of vertices 

other than (1, 2, 3}, and for each of the eight choices (el, 82, 83), where 8i = +_ 1, 

let W(81, 82, 83) be the cardinality of the set of vertices j in W such that aij = 8i, 

i = 1, 2, 3. We must show that 

(2.8) 1 +14:(1,1, - 1 )  + / 4 : ( 1 , - 1 , - 1 )  + I4:(-1,1,1)  + W ( - 1 , - 1 , 1 )  < 2 s  + 1. 

We have from the fact that 1 and 2 are 0-related and from Lemma 2.3 that 

(2.9) W(1, - 1, 1) + W(1, - 1, - 1) + W ( -  1, 1, 1) + W ( -  1, 1, - 1) < s. 

From the fact that 2 and 3 are 0-related, we have 

(2.10) W ( 1 , 1 , - 1 ) + W ( - 1 , 1 , - 1 ) + W ( 1 , - 1 , 1 ) + W ( - 1 , - 1 , 1 ) < s .  

Adding (2.9) and (2.10), we obtain (2.8). 

Let the two parts into which the vertices of G(A) are partitioned, in accordance 

with Lemma 2.4, be denoted by WI and W2. 

LEMMA 2.5. I f  k ~ W~(i = 1, 2), then the number of vertices of W~ to which 

it is adjacent (in G(A)) is at most 1 + 2 s - 2 ;  the number of vertices of 

Wj (j ~ i) to which it is not adjacent is at most 1 + 2s - 2. 

PROOF. We shall only prove the first clause. The proof  of the second is anal- 

ogous. Assume 1 s W~ is adjacent to t > 1 + 2s - 2 vertices in W1. Then consider 

the principal submatrix B of order t + 1 of A formed by 1 and these vertices. 
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Since these vertices are 0-related to 1, the row of B corresponding to each of these 

vertices contains at most s l 's. The first row of B contains exactly one 1. Let 

u = (1 , . . . , 1 ) .  Then (u 'Bu)/u 'u<(- t  2 + 2 + 2 t s ) / t + l < l - t + 2 s .  If  t > l  

+ 2 s -  A, this would imply (u'Bu)/(u'u)< ~, which is impossible. 

Clearly, Lemma 2.5 completes the proof of Theorem 1.2. 

3. Proof of Theorem 1.1 

By Theorem 1.2, we can write A = P + B, where B has the form 

+ 

Hence, 21(B) = n, 2i(B) = 0 for i > 1. P is a symmetric matrix in which the sum 

of the absolute values of the entries in each row is at most 4(1 + 2s - 2). Hence, 

2 1 ( P ) < 4 ( l + 2 s - 2 ) ,  and - 2 1 ( P ) _ _ < 4 ( l + 2 s - 2 ) .  Since 2 2 ( B) = 0 ,  and 

22(A) < 22(B) + 21(P), we have (1.2), for if i > 1, ] 2i(A) ] < max {22(A), -21(A)}. 

Since 21(A)_-> 21(P)+ ;q(B), and 2x(B) = n, we have (1.3). (We have used the 

Courant-Weyl inequalities on eigenvalues of the sum of symmetric matrices.) 

The function f given by (1.1) may very well be too large. We know that any f 

for which the theorems are valid must be at least O(x2), but that leaves a con- 

siderable gap. 

4.  A n a l o g o u s  resul ts  for  n - 21 

In Section 1, we defined the distance between two graphs G and H as the maxi- 

mum valence of the graph (G - H) u (H - G). Let us consider a different distance 

dr(G, H) (F for Frobenius, for reasons which will be apparent below); dr(G, H) 
is the average valence of vertices of the graph ( G -  H)W ( H -  G). For any 

matrix A of order n satisfying the hypothesis of Theorem 1.1, let D~(A) be the 

smallest Frobenius distance to a complete bipartite graph. 

THEOREM 4.1. If a satisfies the hypothesis of Theorem 1.1, then 

(4.1) Dr(A) < n - 21(A ) < 2D~(A). 
2 = = 

To prove the right-hand inequality of (4.1), let S u T be a partition of {1, ..., n} 

so that the Frobenius distance to G(H) of the corresponding complete bipartite 

graph is Dv(A). Let u = (ul, u2 , ' "  u,), where us = 1 if i ~ S, ul = - 1 if i E T. 
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Then 

1 2 u ' A u  
(4.2) 2x(A ) >= - -~ (n  - 2 n D F ( A ) )  = u'u-- 

To prove the left-hand inequality, let X be the result of  transforming A by a 

diagonal similarity matrix, in which each diagonal entry is ___ 1, so that Xx 

= 2x(A)x, x > 0 ,  x 4 0. Let n E  be the number of - l ' s  in ,~, so that 

(4.3) E > D e ( A ) .  

Let B be the matrix obtained from .4 by replacing every - 1  by 0. Then B x  

> 21(A)x, so that, according to the Perron-Frobenius theory of non-negative 

matrices, 

(4.4) 21(B) > ;tx(A). 

But (21(B)) 2 < ~i(2i(B)) ~ = ~ i , i b i f  = n 2 - n E ,  so (by (4.3) and (4.4)), 

(21(A)) ~ < n 2 _ n D e ( A ) ,  

which yields n D e W <  n 2 - (21(A)) 2 = (n - 2I(A)) (n + 2~(A)) < 2 n ( n  - 21(A)), 

which is the left-hand inequality of (4.1). 
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